Case 036

Jagmohan S. Sidhu MD
Department of Pathology and Laboratory Medicine, United Health Services Hospitals, Johnson City, NY

Daniel P. Bellina MD
Department of Hematology and Oncology, United Health Services Hospitals, Johnson City, NY

Rhett P. Ketterling MD
Mayo Clinic Laboratories, Rochester, MN
An 85-year-old female presented, in October 2001, with joint pains and was found to have positive ANA test and absolute lymphocytosis.

October 2001

- Absolute lymphocyte count (ALC): 6300/µL
- Hemoglobin: 13.6 G/DL
- Hematocrit: 39.1%
- Platelet count: 300,000/µL
Peripheral Blood Film (2001)
FLOW CYTOMETRIC ANALYSIS OF PERIPHERAL BLOOD (2001)

Absolute CD4 count = 792/µL (Reference range: 430-1760/µL)

CD19+, CD5+, CD20+, CD22+(mod), CD23+, Surface λ+

CD22+ PE, CD19 PE, CD19 PE, CD19 PE, CD19 PE, CD19 PE
Diagnosis

B-Chronic Lymphocytic Leukemia (B-CLL)
Clinical History

June 2003

- Coombs’ negative, mild, normocytic-normochromic anemia
- Managed with Erythropoietin (EPO) and blood transfusions

January 2004

- Normocytic-normochromic anemia worsened.
- Absolute lymphocyte count (ALC) started decreasing.
- Bone marrow aspiration and biopsy were done.
Bone Marrow Aspirate (2004)

CD19+, CD5+, CD20+, CD22+(mod), CD23+, Surface λ+, CD38+(50%)

Absolute CD4 count = 366/µL (Reference range: 430-1760/µL)
Normal 5

Deleted 5

del(5)(q13;q33)
Diagnosis

B-CLL, atypical morphology
5q- Syndrome
Clinical History and Second Marrow

January 2004-January 2007

- EPO and increased frequency of PRBC transfusions till March ’06.
- Worsening of anemia in March 2006
- Higher degree of dysplasia, CLL, and reticulin fibrosis in marrow.

5-azacytidine started in March ’06 and failed in July ’06.
Thalidomide given from August ’06 thru January ’07
Flow Cytometric Analysis of the Bone Marrow (2006)

Absolute CD4 count = 960/µL (Reference range: 430-1760/µL)

CD19+, CD5+, CD20+, CD22+(mod), CD23+, Surface λ+, CD38+(80%), FMC7+

Absolute CD4 count = 960/µL (Reference range: 430-1760/µL)
FISH (October 2006) of interphase cell nuclei with a CLL-specific comprehensive probe set

Arrow indicates cells with trisomy 12

30/200 cells with round nuclei

12cent (D12Z3), 12q15 (MDM2)
FISH (November 2006)
of interphase cell nuclei with a MDS-specific comprehensive probe set

5p15.2 (D5S630), 5q31 (EGR1)

66/200 cells with reniform nuclei

Cell indicates deletion of EGR1
What are These Cells with Reniform Nuclei?

Reactive lymphocytes, a few monocytes and a few metamyelocytes

100 cells with reniform nuclei

Ratio of reactive lymphocytes : monocytes: metamyelocytes = 92:6:2
Diagnosis

B-CLL, atypical with Trisomy 12
5q- Syndrome
Clinical Course

- OCT '01
- JUN '03
- AUG '04
- MAR '06
- JUN '07
- SEP '07

ALC drops; Dx of 5q- made

- JAN '04
- JUN '04

5-Azacytidine started

- NO Chemo

- Thalidomide started

- Thalidomide stopped

- Revlimid started

- No Chemo

- JAN '07
- APR '07
Minimally Deleted Regions in Chromosome 5q Deletions

- IL-4
- IL-9 (5q31.1)
- EGR-1 *(5q31.2)
- D5S413 (5q32)
- GLRA1 *(5q33.1)

MDS, t-MDS, AML, and t-AML involving 5q deletions

5q- Syndrome

* EARLY GROWTH RESPONSE FACTOR 1
* GLYCINE RECEPTOR, ALPHA-1 SUBUNIT
Three Important Events

- Diagnosis of B-CLL (October 2001)
- Diagnosis of 5q- syndrome (January 2004)
- Diagnosis of trisomy 12 (November 2006)
What Happened Before October 2001?

? Genetic event in a hematopoietic stem cell

HSC → Mutated HSC → B-CLL clone
What Happened in January 2004?

Acquired mutation in a lympho-myeloid hematopoietic stem cell

LMHSC

LMHSC with 5q-

B-lymphoid Line

T-lymphoid Line

Erythroid Line

Myeloid Line

Megakaryocytic Line

Loss of IL-4 gene
What Happened Between Jan’04 & Nov ‘06?

CLL cell

Trisomy 12

CLL cell with Trisomy 12

B-CLL clone with trisomy 12
What did del(5q) do to the CLL?

- Del(5q) in T-cells
 - Loss of IL4 gene in T-cells
 - Increased apoptosis CLL cells
 - B-CLL disease regression

What did trisomy 12 do to the CLL?

- Acquisition of Trisomy 12
 - Increased HDM2 expression
 - Increased proteasome-mediated p53 destruction
 - Decreased apoptosis of CLL lymphocytes
 - No progression of CLL
 - CLL disease progression

IL-4 producing and secreting cells in B-CLL
1. CLL cells
2. Th2 cells
3. Th2-like cells
Myelodysplastic Syndrome due to isolated del(5q)

Cytokine imbalance

Increased apoptosis of progenitors & their progeny

Myelodysplastic Syndrome
Summary

Hypothesis

Does the acquisition of 5q minus abnormality, with its resultant loss of IL-4 gene in Th2 cells and Th2-like suppressor cells, prevent progressive disease in a B-CLL patient even in the presence of trisomy 12?
5q- Syndrome and B-CLL (Two Diseases in One Patient)

“This town ain’t big enough for the two of us.”

References

15 Mu X, Kay NE, Gosland MP, Jennings CD. Analysis of blood T-cell cytokine expression in B-chronic lymphocytic leukemia: evidence for increased levels of cytoplasmic IL-4 in resting and activated CD8 T cells. B J Haematol 1997;96:733-735.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors and Title</th>
</tr>
</thead>
</table>