New Course Request

Indiana University

Indianapolis Campus

Check Appropriate Boxes: Undergraduate credit [] Graduate credit [X] Professional credit []

1. School/Division: Science, Biostatistics
2. Academic Subject Code: BIOS
3. Course Number: 8531 (must be cleared with University Enrollment Services)
4. Instructor: Y Liu
5. Course Title: Sequence Analysis

Recommended Abbreviation (Optional)

(Limited to 32 Characters including spaces)

6. First time this course is to be offered (Semester/Year): Fall 2009
7. Credit Hours: Fixed at 3.0 or Variable from _______ to _______
8. Is this course to be graded S-F (only)? Yes [] No [X]
9. Is variable title approval being requested? Yes [] No [X]
10. Course description (not to exceed 50 words) for Bulletin publication: P: BIOS 8530. This course is designed to develop students' skills in sequence analyses and communications through multiple real life projects covering pairwise alignment, multiple alignment, evolution and phylogeny, and cis-regulatory analysis.

11. Lecture Contact Hours: Fixed at 3 or Variable from _______ to _______
12. Non-Lecture Contact Hours: Fixed at _______ or Variable from _______ to _______
13. Estimated enrollment: 5-10 TBD of which 100 percent are expected to be graduate students.
14. Frequency of scheduling: [] New Program [] New course for new biostatistics Ph.D. program [] elective
15. Justification for new course: _______
16. Are the necessary reading materials currently available in the appropriate library? Yes
17. Please append a complete outline of the proposed course, and indicate instructor (if known), textbooks, and other materials.
18. If this course overlaps with existing courses, please explain with which courses it overlaps and whether this overlap is necessary, desirable, or unimportant.
19. A copy of every new course proposal must be submitted to departments, schools, or divisions in which there may be overlap of the new course with existing courses or areas of strong concern, with instructions that they send comments directly to the originating Curriculum Committee. Please append a list of departments, schools, or divisions thus consulted.

Submitted by: [Signature]
Date 3/17/09
Department Chairman/Division Director

Approved by: [Signature]
Date 4/17/2009
Dean

Dean of Graduate School (when required)

University Enrollment Services

After School/Division approval, forward the last copy (without attachments) to University Enrollment Services for initial processing, and the remaining four copies and attachments to the Campus Chancellor or Vice-President.

University Enrollment Services Final—White; Chancellor/Vice-President—Blue; School/Division—Yellow; Department/Division—Pink; University Enrollment Services Advance—White
BIOS S531 (3 cr.)
Sequence Analysis

Syllabus

A. Instructors
Lang Li, PhD, Associate Professor
Yunlong Liu, PhD, Assistant Professor
Changyu Shen, PhD, Assistant Professor

Contact information:
Yunlong Liu, PhD
Division of Biostatistics
Indiana University School of Medicine
410 West 10th Street, Suite 5000
Indianapolis, IN 46202

Office: (317) 278-9222
Email: yunliu@iupui.edu

B. Prerequisites
Students are assumed to have completed BIOS S530 (Statistical Methods in Bioinformatics) and can efficiently program. Students who are uncertain about their levels of preparation are encouraged to contact the instructors.

C. Course Description and Rationale
Sequence analysis is very useful in practice. When and how to apply different methods and the interpretations of the data analysis results are heavily driven by the experiences. This course is designed to train students’ skills in sequence analyses and communications through multiple real life projects. The projects will cover pairwise alignment; multiple alignment, evolution and phylogeny, and cis-regulatory analysis. The course’s primary audiences include are graduate students in biostatistics and bioinformatics.

The most important feature of the course is the intended balance among algorithm, statistics and application. At the end of this course, we expect that the students can understand the basic sequence analysis methods and tools, and can apply these methods and tools for practical problems. The course is part of the Biostatistics Ph.D. curriculum.

Course material will be covered by lectures. Knowledge gained will be reinforced by homework assignments and programming exercises.

D. Course Description for Bulletin
P: BIOS S530. This course is designed to develop students’ skills in sequence analyses and communications through multiple real life projects covering pairwise alignment, multiple alignment, evolution and phylogeny, and cis-regulatory analysis.

E. Educational Objectives

Students will receive a balanced training in algorithm, statistics and their application. By participating in the course, they will acquire hands on experience for implementing sequence analysis. We will assess students’ achievement towards these objectives by homework exercises and in-class or take home examinations.

F. Course Content

1. Pairwise alignment (week 1-5)
 - Dynamic programming
 - The Needleman-Wunsch algorithm
 - The Smith-Waterman algorithm
 - Linear-space alignment
 - Four-Russian Algorithm
 - Blast and its variants
2. Multiple alignment (week 6-7)
 - Star algorithm
 - Server and Software
3. Evolution and phylogeny (week 8-9)
 - Neighborhood-joining
 - Maximal likelihood estimation
 - Software
4. Cis-regulatory analysis (week 10-13)
 - Gibbs Sampler
 - MEME.
 - Cis-regulatory analysis in multiple species
5. Final exam (week 14).

G. Required and Recommended Texts:

The course will use the following textbook:

Biological sequence analysis by Durbin, Eddy, Krogh, Mitchinson
 Chapters 1-4, 6, (7-8), (9-10)

Algorithms on strings, trees, and sequences by Gusfield
 Chapters (5-7), 11-12, (13), 14, (17)

We will not necessarily follow the order of the original chapters in the book. We will supplement the textbook with instructors’ own lecture notes.

H. Evaluation and Grading

Student’s performance will be evaluated through homework exercises and in-class/take home exams. The homework assignment will account for 40% of the course grade. Two exams will
each contribute 30% to the overall course score, which ranges from 0 to 100. Letter grades for the course are assigned using the following scale: A: 90-100; B: 80-89; C: 70-79; D: 60-69; F: less than 60. Within each letter grade, "+" and "-" will be assigned if the numeric score is in the top and bottom quintiles, respectively.

I. Bibliography:
N/A

J. Cheating and Plagiarism:
Academic misconduct will not be tolerated and all cases will be reported. Examine the IU Code of Student Rights, Responsibilities, and Conduct at http://www.iupui.edu/code and in particular examine the rules regarding academic misconduct at http://www.iupui.edu/code/#P2_G. Violations of these rules will result in a grade of "F" (or 0%) for the assignment in question, and may result in an "F" for the course or even expulsion from the university (see http://life.iupui.edu/rights/undergrad/sanctions.html).

K. Americans with Disabilities Act
If you need any special accommodations due to a disability, please contact Adaptive Educational Services at (317)-274-3241 or Joseph T. Taylor Hall (UC), Room 137.